首页> 外文OA文献 >Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
【2h】

Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems

机译:基于语义条件的基于LsTm的自然语言生成   口语对话系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural language generation (NLG) is a critical component of spoken dialogueand it has a significant impact both on usability and perceived quality. MostNLG systems in common use employ rules and heuristics and tend to generaterigid and stylised responses without the natural variation of human language.They are also not easily scaled to systems covering multiple domains andlanguages. This paper presents a statistical language generator based on asemantically controlled Long Short-term Memory (LSTM) structure. The LSTMgenerator can learn from unaligned data by jointly optimising sentence planningand surface realisation using a simple cross entropy training criterion, andlanguage variation can be easily achieved by sampling from output candidates.With fewer heuristics, an objective evaluation in two differing test domainsshowed the proposed method improved performance compared to previous methods.Human judges scored the LSTM system higher on informativeness and naturalnessand overall preferred it to the other systems.
机译:自然语言生成(NLG)是语音对话的重要组成部分,它对可用性和感知质量都具有重大影响。大多数常用的NLG系统采用规则和试探法,往往会在没有人类语言自然变化的情况下产生刚性和风格化的响应,而且也不容易扩展到涵盖多个领域和语言的系统。本文提出了一种基于语义控制的长短期记忆(LSTM)结构的统计语言生成器。 LSTMgenerator可以通过使用简单的交叉熵训练准则共同优化句子规划和表面实现来从不对齐的数据中学习,并且可以通过从输出候选中进行采样来轻松实现语言变化。通过较少的启发式方法,在两个不同的测试域中进行了客观评估,表明该方法得到了改进与以前的方法相比,性能更高。人类法官对LSTM系统在信息性和自然性方面的评分更高,并且总体上优于其他系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号